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Abstract

Anomaly event detection on road traffic has been a chal-

lenging field mainly due to lack of training data and a

wide variety of anomaly cases. In this paper, we propose a

novel two-stage framework for anomaly event detection in

road traffic based on anomaly candidate identification and

starting time estimation of vehicles. First, we use Gaus-

sian mixture models (GMMs) to generate the foreground

mask and background image to identify the anomaly can-

didates. Foreground mask is used to produce the region

of interest (ROI) to filter out the noise from the object de-

tector, YOLOv3, in the background image. Then, we apply

the TrackletNet Tracker (TNT) to extract the trajectory of

anomaly candidate to estimate the anomaly starting time.

Experimental results, with achieved S3 score performance

of 93.62%, on the Track 3 testing set of CVPR AI City

Challenge 2019 City Flow dataset, show the effectiveness

of the proposed framework and its robustness in different

real scenes.

1. Introduction

Due to the rapid development of computation power, us-

ing computer vision techniques for urban traffic optimiza-

tion receives great attention in recent years. The bad road

conditions can be reduced if damage control is efficient.

However, anomaly detection in road traffic has been a chal-

lenging task. For example, there are only rare labeled

anomaly videos in road traffic for training. In addition, a

large amount of different complicated anomaly cases is an-

other reason to make the difficulty of anomaly detection.

Therefore, it is necessary to develop a method to automati-

cally detect the anomalies on the roads based on the traffic

videos.

Previous works of anomaly detection in videos are only

for specific purpose [24]. In this work, we propose a two-

stage framework for anomaly detection in road traffic, as

shown in Figure 1, which performs anomaly candidate iden-

tification and starting time estimation of vehicles from traf-

fic videos. For anomaly candidate identification, we use

Gaussian mixture models (GMMs) [22, 10] to obtain the

foreground and background of each frame. Then the fore-

ground images of each video are added up to generate a traf-

fic flow mask which is treated as the region of interest (ROI)

for vehicle detection. For each frame, the vehicles that lie

in both the background regions and ROI are detected as

anomalies, since they are non-moving vehicles on the main

traffic road. Here, YOLOv3 is used as the vehicle detector

in the experiment. After the anomaly candidates are de-

tected, two branches are used to determine the starting time

of the anomaly in the second stage. First is to detect the ex-

act starting time of small vehicles which are far away from

the camera with an unsupervised approach adopted from

foreground object extraction. For other cases, based on the

detection results, a multi-object tracking (MOT) approach,

called TrackletNet Tracker (TNT) is adopted for detection

associations among sequential frames. Then the whole tra-

jectory of the anomaly vehicle can be obtained. We formu-

late the starting time estimation to a curve fitting problem

based on the computer vision geometry. A rough starting

time is estimated according to the fitting errors. Afterward,

the starting time is refined by checking the bounding box

overlap along the time of the trajectory. To summarize, we

claim the following contributions,

• A novel and effective anomaly detection approach is

proposed based on GMMs and automatic ROI genera-

tion.

• An effective TNT tracker is used to obtain the anomaly

trajectory.

• We formulate the starting time estimation as a two-

stage curve fitting problem.
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The rest of this paper is organized as follows. We provide

an overview of related works in Section 2 and our proposed

anomaly detection approach is introduced in Section 3. The

experiments and evaluations of our method on the CVPR

AI City Challenge 2019 City Flow dataset [25] are shown

in Section 4. Finally, the conclusion is drawn in Section 5.

2. Related Works

2.1. Vehicle Detection.

With the fast development of deep learning, convolu-

tional neural network (CNN) based detectors have shown

great power in object detection in recent years. Generally,

there are two categories of CNN based detectors, i.e., one-

stage and two-stage approaches. For one-stage approaches,

such as [16, 17, 18, 11], the input images are divided into

different small regions or anchor boxes at different scales.

Then the classification and regression are processed for

each anchor box. Different from one-stage approaches,

two-stage approaches [7, 6, 19, 4, 9] adopt region proposal

networks (RPN) to detect objects of the input images. Then

the feature maps of detected ROI regions are pooled and

used for further classification and regression.

In addition to CNN based detectors, background sub-

traction for vehicle detection is also very useful in static

cameras and anomaly detection. For example, [22, 10] use

Gaussian mixture models (GMMs) for background subtrac-

tion. Similarly, [30, 28] also use GMMs as a pre-processing

step for vehicle detection in the anomaly detection task.

2.2. Deep Learning based Anomaly Detection.

Recently, deep learning technologies have been devel-

oped for the anomaly detection in computer vision fields

[20, 21]. For example, [20] uses cascading 3D deep neu-

ral networks for fast anomaly detection and localization in

crowded scenes. In [21], the authors introduce a genera-

tive adversarial network (GAN) [8] based method to detect

the anomalies in images, using only normal data to train

the models. In addition to traffic videos, there are sev-

eral attempts to detect human violence or abnormal events

in crowd scenes, such as [13, 15, 23, 29, 12]. In [23], a

deep anomaly ranking model is proposed to predict high

anomaly score in the testing videos. In [29], a double fu-

sion framework, combining the benefits of traditional early

fusion and late fusion strategies is introduced to exploit the

complementary information of both appearance and motion

patterns. In [12], an end-to-end trainable composite convo-

lutional long short-term memory (Conv-LSTM) network is

proposed to predict the evolution of a video sequence from

a small number of input frames. With the help of neural

networks, the anomaly can indeed be detected from end-

to-end. However, large scale training anomaly datasets are

very difficult to be obtained.

2.3. Tracking aided Anomaly Detection.

To precisely know when and where an anomaly occurs in

the videos, object tracking techniques can be also adopted

in the anomaly detection [30, 3]. In [30], velocity informa-

tion is extracted from tracking. When the velocity suddenly

changes, there is a high chance that an anomaly happens. In

[3], trajectory analysis is performed for anomalous behavior

detection from static cameras. Usually, large scale labeled

dataset is not required in tracking aided anomaly detection,

and it can easily be transferred to other scenarios, which is

also one major advantage of this type of anomaly detection.

3. Proposed Method

3.1. Anomaly Vehicle Candidate Identification

First, Gaussian mixture models (GMMs) are applied for

background modeling so that we can generate the back-

ground image and foreground mask for each frame from a

video sequence. Then, we add up all the foreground masks

from one video to generate a traffic flow mask. Based

on the traffic flow mask, we produce a region of interest

(ROI) to remove unreliable detections. The detected vehi-

cles in the background image usually are anomaly candi-

dates since they are non-moving vehicles. The framework

of the anomaly candidate identification is shown in the left

part of Figure 1 and the details of the methods are described

in the following part of this subsection.

Background Modeling. Using GMMs, we can build the

background of a video in pixel level. More specifically, each

pixel in the video frame during a chosen time period, we

can estimate the density of pixel intensity using a mixture

of Gaussians with K components as follows,

p(xt) =
K
∑

k=1

wk,tN (xt|µk,t, σ
2
k,t), (1)

with

N (xt|µk,t, σ
2
k,t) =

1

σk,t

√
2π

exp (− (xt − µk,t)
2

2σ2
k,t

),

(2)

where µk,t is the mean, σ2
k,t is the variance of the k-th Gaus-

sian component and wk,t is non-negative estimated weights

which add up to one.

When given a new sample xt+1 that can be matched to

one of the existing Gaussian, then the weight, mean and

variance of that Gaussian are updated according to the fol-

lowing equations [22],

µk,t+1 = (1− ρ)µk,t + ρxt+1,

σ2
k,t+1 = (1− ρ)σ2

k,t + ρ(xt+1 − µk,t+1)
2,

(3)
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Figure 1. A two-stage framework for anomaly detection in road traffic. In the first stage, anomaly candidate identification, we use GMMs

to obtain the foreground and background of each frame. Then the foreground images of each video are added up to generate a traffic

flow mask which is treated as ROI for vehicle detection. For each frame, the vehicles that lie in both the background regions and ROI are

detected as anomalies, since they are non-moving vehicles on the main traffic road. After that, in the second stage, the TNT is adopted for

detection associations among sequential frames. Then the whole trajectory of the anomaly vehicle can be obtained. Finally, the starting

time is estimated by solving a curve fitting problem based on computer vision geometry.

where ρ = αN (xt+1|µk,t, σ
2
k,t), α is a learning rate. The

prior weights of all Gaussians are adjusted as follows,

wk,t+1 = (1− α)wk,t + αMk,t+1, (4)

where Mk,t+1 = 1 for the matching Gaussian and

Mk,t+1 = 0 for all the others.

We then order the Gaussians by the value of wk,t/σk,t

and the first B distributions with high supporting evidence

and least variance are chosen as the background,

B = argmin
b

(

b
∑

k=1

wk,t > P ), (5)

where P is the minimum portion of the image which is

expected to be the background. Then we define the back-

ground probability as

Pbg =

∑B

k=1 wk,tN (xt|µk,t, σ
2
k,t)

∑K

k=1 wk,tN (xt|µk,t, σ2
k,t)

. (6)

Then the background mask Ibg(xt) of pixel xt at time t can

be described as,

Ibg(xt) = 1{Pbg>0.5}, (7)

where 1{·} is an indicator function which outputs 1 if the

condition satisfies otherwise outputs 0.

Traffic Flow Mask Generation. In order to automati-

cally get regions of interest (ROI), we add up all the fore-

ground masks of a video to generate the final traffic flow

mask, i.e.,

IROI = 1{ 1

T

∑
T
t=1

(1−Ibg,t)>γ}, (8)

Figure 2. Examples of background modeling and traffic flow mask.

From the top row to the bottom row: original video frames, fore-

ground masks after background subtraction, traffic flow masks, re-

spectively.

where γ is a pre-defined threshold for ROI generation. To

eliminate noise, median filters are adopted. Some examples

of background modeling and traffic flow mask are shown in

Figure 2.

Anomaly Candidate Identification. For each frame, if

the detected vehicle lies in the background region and also

in our generated ROI, then this vehicle is very likely to be

an anomaly case because it is a non-moving vehicle. We

define the detection ROI at time t as the element-wise mul-
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Figure 3. Examples of YOLOv3 detection results.

Figure 4. Examples of small vehicle detection. Top row: an ex-

ample of an anomaly vehicle far away from the camera. Middle

row: the generated traffic flow mask. Bottom row: the detected

anomaly vehicle using frame subtraction. The figures in the right

column are the zoom-ins of the figures in the left column.

tiplication between IROI and Ibg,t, i.e.,

Idet,t = IROI · Ibg,t, (9)

Then the detections that lie in the Idet,t mask are treated as

anomaly candidates. Some examples of detection results

from the pre-trained YOLOv3 detector are shown in Fig-

ure 3.

3.2. Anomaly Starting Time Estimation

In this subsection, we describe how to estimate the

anomaly starting time with two separate branches. One is

based on small object detection. In some cases, Small ob-

jects cannot be easily detected by the trained YOLOv3 de-

tector. As a result, an unsupervised approach is adopted for

small object detection. The first frame that the small objects

are detected is treated as the anomaly starting time. For

the second branch, a curve fitting based approach is pro-

posed. First, we perform multi-object tracking using the

pre-trained TrackletNet Tracker (TNT). Then the trajecto-

ries are obtained for each anomaly candidate. From the

computer vision geometry, each trajectory with a constant

moving velocity can be represented by an inversely propor-

tional linear function. The anomaly starting time can be es-

timated by optimizing a curve fitting problem. The details

of each part are demonstrated as follows.

Small Object Detection. In some cases, some anomaly

vehicles that are far away from the camera are not detected

by the YOLOv3 detector. In that case, an unsupervised ap-

proach is adopted to detect objects that are far away from

the camera. Here, we use frame t to subtract the frame

(t +m) in the background region to see if there are strong

values, i.e.,

∆It+m = g(|It − It+m| · Idet,t+m), (10)

where g(·) represents median filter operations and m is an

empirically selected duration between two frames. Then

high responses from ∆It+m are also identified as anomaly

candidates. If there is no small anomaly vehicle in a video,

the background pixel value varies little, and the difference

between these two pixels should be close to 0. However,

if there is an anomaly vehicle appearing in the background,

the difference of background pixel of the current frame t
and frame t +m will be much bigger than 0. Examples of

small vehicles detection are shown in Figure 4. In this case,

the first frame that the small objects are detected is treated

as the anomaly starting time.

Multi-Object Tracking. We adopt the TrackletNet

Tracker (TNT) [27] in Track 3 to extract the trajectories

of anomaly vehicles. The tracking system is based on a

tracklet graph-based model, as shown in Figure 5, which

has three key components, 1) tracklet generation, 2) con-

nectivity measure, and 3) graph-based clustering. Given

the detection results in each frame, the tracklets are gen-

erated based on the intersection-over-union (IOU) and the

appearance similarity between two adjacent frames, which

are treated as the nodes in the graph. Between every two

tracklets, the connectivity is measured as the edge weight in
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the graph model, where the connectivity represents the like-

lihood of the two tracklets being from the same object. To

calculate the connectivity, a multi-scale TrackletNet is built

as a classifier, which can combine both temporal and spa-

tial features in the likelihood estimation. Clustering [26] is

then conducted to minimize the total cost on the graph. Af-

ter clustering, the tracklets from the same ID can be merged

into one group. Examples of TNT on Track 3 are shown in

Figure 6.

The reason we use TNT as our tracking method is due to

its robustness dealing with occlusions. More specifically, 1)

TrackletNet focuses on the continuity of the embedded fea-

tures along the time. In other words, the convolution kernels

only capture the dependency along time. 2) The network in-

tegrates object Re-ID, temporal and spatial dependency as

one unified framework. Based on the tracking results from

TNT, we know the continuous trajectory of each detected

object ID across frames.

Starting Time Estimation by Curve Fitting. For each

anomaly vehicle candidate, we can extract the whole tra-

jectory from the results of TNT. Then we can check the 2D

bounding box overlap to calculate the anomaly starting time

tst by,

t̂st = argmin
t

t,

s.t.,
BBox(t+ τ) ∩ BBox(t)

BBox(t+ τ) ∪ BBox(t)
> δ,

(11)

where BBox(t) is the bounding box of the candidate vehicle

at time t, τ is the time interval for calculating the difference

and δ is the IOU threshold for identifying whether the ve-

hicle is stopping. However, there are two drawbacks of this

approach, i.e., 1) the performance is easily affected if the

vehicle is far away from the camera in some frames. This is

because the vehicle is moving quite slowly in the 2D image

coordinate even before the anomaly happens if it is far away

from the camera. 2) The noise from the detection and track-

ing also makes the criteria not very reliable. As a result, we

propose a two-stage curve fitting approach for choosing the

accurate starting time in the following subsection.

From the computer vision geometry, the relation be-

tween the 3D coordinate and the 2D image coordinate can

be written as,

x = fX/Z + xc,

y = fY/Z + yc,
(12)

where (X,Y, Z) is the 3D coordinate, (x, y) is the 2D im-

age coordinate, (xc, yc) is the image center and f is the fo-

cal length. If the vehicle is moving with a constant speed,

i.e.,

X(t) = axt+ bx,

Y (t) = ayt+ by,

Z(t) = azt+ bz,

(13)

Figure 5. The TNT framework for multi-object tracking. Given

the detections in different frames, detection association is com-

puted to generate Tracklets for the Vertex Set V . After that, each

pair of two tracklets are put into the TrackletNet to measure the

connectivity, which formed the similarity on the Edge Set E. A

graph model G can be derived from V and E. Finally, the track-

lets with the same ID are grouped into one cluster using the graph

partition approach.

then

x(t) =
f(axt+ bx)

(azt+ bz)
+ xc,

y(t) =
f(ayt+ by)

(azt+ bz)
+ yc,

(14)

which means the 2D trajectory can be represented by an

inversely proportional linear function as,

x(t) =
1

a1t+ b1
+ c1,

y(t) =
1

a2t+ b2
+ c2,

(15)

where a1, b1, c1 and a2, b2, c2 are the parameters that need

to be estimated.

For each trajectory, we formulate the following loss
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Figure 6. Examples of multi-object tracking with TNT. Each color

represents a unique tracked vehicle ID. Dots are vehicle locations

detected in the previous frames.

function,

L(a1, b1, c1, a2, b2, c2)

=
∑

t

‖xt − (
1

a1t+ b1
+ c1)‖2

+ ‖yt − (
1

a2t+ b2
+ c2)‖2,

(16)

where (xt, yt) are the observed 2D coordinates from the

tracking results at frame index t. To solve this curve fitting

problem, we follow the assumption that the vehicle should

have a constant speed in the 3D coordinate. As a result, we

need to select the samples roughly before the anomaly hap-

pens for the curve fitting. Here we use a simple rule that

we exclude the non-moving samples which can be inferred

from the trajectory for minimizing the loss function based

on the generated background masks. After that, RANSAC

[5] algorithm is adopted to further remove outliers for the

optimization.

When the anomaly happens, the velocity of the candidate

vehicle should have an abrupt change, which will cause a

large fitting error with the estimated curve function. As a

result, a rough starting time t1 from the first stage is esti-

Figure 7. An example of the curve fitting.

mated by the following criteria,

t̂1 = argmax
t1

| 1
t1

t1
∑

t=1

(‖xt − (
1

a1t+ b1
+ c1)‖2

+ ‖yt − (
1

a2t+ b2
+ c2)‖2)

− 1

(N − t1)

N
∑

t=t1+1

(‖xt − (
1

a1t+ b1
+ c1)‖2

+ ‖yt − (
1

a2t+ b2
+ c2)‖2)|,

(17)

where N is the length of the trajectory. The above equation

means that we want to find a time threshold that makes the

fitting error before the threshold to be small and the fitting

error after the threshold to be large. One example of the

curve fitting is shown in Figure 7.

After estimating a rough starting time from above, in the

second stage, we estimate the final starting time tst based on

the bounding box overlap using the following equation,

t̂st = argmin
t

|t− t̂1|,

s.t.,
BBox(t+ τ) ∩ BBox(t)

BBox(t+ τ) ∪ BBox(t)
> δ,

(18)

which is the final output of our proposed method.

4. Experiments and Results

4.1. Datasets.

The benchmark dataset [1] contains 100 training and 100

testing videos, each approximately 15 minutes in length,

recorded at 30 fps and 800 × 410 resolution. The types

of anomalies include vehicle stopping on the road, vehicle

losing control and crushes, vehicle crushing with another
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Figure 8. Examples of the dataset used for training the YOLOv3

detector.

vehicle, vehicle going off the road and going into the grass.

4.2. Implementation Details.

To balance the performance and the time efficiency

of our system, we use YOLOv3 as our vehicle detector.

A combination of datasets is used for training YOLOv3.

These datasets include labeled videos in the training set of

AI City Challenge 2019 City Flow dataset [25], training

data from AI City Challenge 2018 [14], traffic flow videos

from high ways [2] and also VisDrone dataset [31]. Exam-

ples are shown in Figure 8.

Figure 9. Examples of detected anomalies. Left column: the orig-

inal video frames. Right column: the corresponding processed

video frames with detected anomalies shown with red bounding

boxes from background regions. Other vehicles are smoothed out

using our proposed method.

4.3. Evaluation and Results.

We show some qualitative results in Figure 9. The fig-

ures in the left column are from the raw videos. The corre-

sponding right figures are the processed video frames with

only the anomaly vehicles remained in the image.

For quantitative results, as described on [1], the evalua-

tion is based on anomaly detection performance, measured

by the F1-score, and detection time error, measured by nor-

malized root mean square error (NRMSE). Specifically, the

final score S3 is defined as,

S3 = F1(1− NRMSE). (19)

To compute the F1-score, a true-positive (TP) detection is

considered as the predicted anomaly within 10 seconds of
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Rank Team ID Team Name S3 Score

1 12 Traffic Brain 0.9534

2 21 UWIPL 0.9362

3 66 Spartans 0.8504

4 53 Desire 0.7598

5 24 Avengers5 0.7562

6 79 Alpha 0.6997

7 48 BUPT-MCPRL 0.6585

8 113 HCMUS 0.6129

9 36 DGRC 0.4337

10 158 TITAN LAB 0.4083

Table 1. The final ranking and S3 score on Track 3. Our team is

shown in bold type.

F1 RMSE S3 Score

0.9577 6.7461 0.9362

Table 2. The F1 sore and RMSE of the proposed method on the

testing data.

the true anomaly (i.e., seconds before or after) that has the

highest confidence score. Each predicted anomaly will only

be a TP for one true anomaly. A false-positive (FP) is a

predicted anomaly that is not a TP for some anomaly. Fi-

nally, a false-negative (FN) is a true anomaly that was not

predicted. Hence, the F1-score is measured by,

F1 =
2TP

2TP + FP + FN
. (20)

We compute the detection time error as the RMSE of the

ground truth anomaly time and predicted anomaly time for

all TP predictions. In order to eliminate jitter during sub-

missions, normalization is done using min-max normaliza-

tion with a minimum value of 0 and a maximum value of

300, which represents a reasonable range of RMSE values

for the task. Teams with RMSE greater than 300 will re-

ceive an of 1, and thus a score of 0. Hence, NRMSE is

defined as,

NRMSE =

min

{

√

1
TP

∑TP

i=1(ti − tGT
i )2, 300

}

300
.

(21)

where tGT
i is the ground truth starting time of the anomaly,

ti is the submitted starting time. The final ranking and S3

score are shown in Table 1. We can see that our team is in

rank 2, as shown with bold type, which demonstrates the

effectiveness of our proposed method. The F1 measure and

RMSE of the proposed method are shown in Table 2.

5. Conclusion

In this paper, we propose a novel and effective two-stage

approach for anomaly candidate identification and starting

time estimation. For the anomaly candidate identification,

an unsupervised approach is used to generate the ROI for

anomaly detection. Besides, we can even detect vehicles

far away from the camera using the background subtraction

method. In the second stage, the anomaly starting time is

measured with the help of the proposed curve fitting ap-

proach. In the evaluation, our proposed method achieves

rank 2 place in the challenge and shows promising perfor-

mance compared with other methods.
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